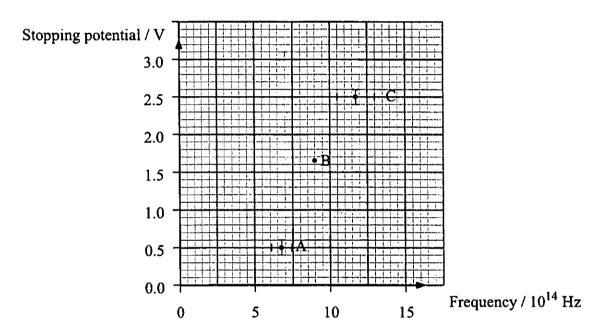
MARKSCHEME

November 1999

PHYSICS

Higher Level

Paper 2


SECTION A

A1. (a) $5.6 \times 10^{14} \text{ Hz}$ $Accept (5.4 \rightarrow 5.8) \times 10^{14} \text{ Hz}$ Reject 5.5 Hz [1]

Correct values for stopping potential error bars for A and C $(0.5\pm0.1\text{V}, 2.5\pm0.1\text{V})$ [1] Correct values for frequency bars for point A 6.75 ± 0.68 [1] Correct values for frequency bars for point C 11.75 ± 1.18 [1]

Correct answer is

(b)

(c) Use of Einstein's photoelectric equation

Identifying the gradient of line = h / e

i.e. $h = gradient \times 1.6 \times 10^{-19}$ Correct evaluation of gradient of candidate's line

e.g. gradient = 4.0×10^{-15} V s (ignore units)

Correct evaluation of h

e.g. $h = 4.0 \times 10^{-15} \times 1.6 \times 10^{-19} = 6.4 \times 10^{-34}$ J s

Accept $5.8 \rightarrow 7.0 \times 10^{-34} \text{ J s}$

Substitution of single value is maximum three out of four.

[1] [1] [1]

Good s		een th	ic abc	,,,,	****	SCCII	J113												
Inswe	r is																		
I II.					- - -							1			-]				\exists
					\square	++-						-						1 1	\exists
				cui	Ten	t / μ/2	1 5) <u>k</u>	-			1	بابند		1 1		+	(d)	
				┊			111	-4	\ 			+			- - - -				
77		- - - -		HH					\Box	-	-	-	!				-	1125	7
TT.					\Box	1111	<u>?</u> '	5		71	لي		-		1-1-1		-	(c)	
								7				11	<u> </u>						
<u> </u>		+++	- ┨╌ ┆ ╌┠╾╁╸	╬╂	- - - 	-!- - -		_1	7	- - - 			+	i				1	<u> </u>
			+++	 - 			H	J [1-1-		- -					+	1	7
	_3		2				1							ļ	7			3	 !
1-1-	- [- 	┉		<u> </u>			<u>م</u> ا					1;		-	7++		olta	حنا	<u>.</u>
-1-	_	7-11	╌╂╌┼╍┼╌┼		++-}		<u> </u> =Z	P[-		⊻	Ulta	\$ <u>-</u>	-
					11			ΙI	二			1			111				=
]-}-}-	_		├ ┨╌┧╾┠╺╁	╬┪	╍┼╍┼╍╂	-┼╌ ┼╌┼╌┼	-┠╼ <u>┼</u> ╾	 -⊦-I	╬┉┤			╌┼╌	— <u>:-</u> }-	 	╌┠╼┼╍┼		-	┦╼┼╼╌	
				1-11-1			=3	0						-			1	I	_
-	┈ ┩╾┾╶┼╍┼╸	~- - 				1 1 1	· 			<u> </u>		_	. 1	İ			1	 - 	=
														1					-

A2. (a)	(i)	Weight DOWN Tension (tensions) UP (do not allow friction)	[1] [1]

(ii)	Vertical pair	- Weight DOWN + reaction(s) from ground UP	[1]
	Horizontal pair	- Thrust / force from engine RIGHT	

- Friction / wind resistance LEFT [1]

(iii) Tension ALONG STRING [1] [1] Weight DOWN N.B. Extra (incorrect) forces reduce total awarded by [1 mark] each

(b)	Sensible discussion for (i) - realisation that resultant force = zero
	Sensible discussion (ii) - realisation that resultant force = zero
	Sensible discussion (iii) - realisation that resultant force = CPF
	- idea of where resultant comes from
	i.e. component of T.

half the maximum current i.e. 25 µA

A3. (a) Any closed cycle Shape correct Correct labelling of corners

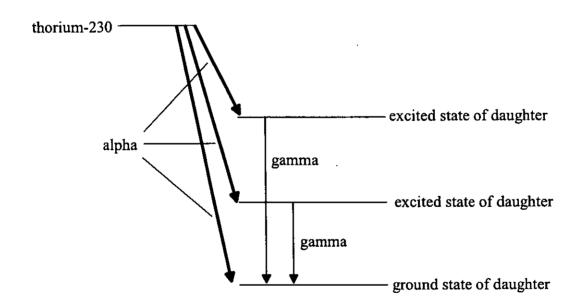
[1] [1]

[1]

[1] (b) (i) $D \rightarrow A$ [1] (ii) $B \rightarrow C$ Any statement of second law [1] (c) [1] Correct and appropriate discussion Use of coefficient of performance = T_{cold} / Temp difference (d) [1] Conversion of temperatures into Kelvin [1] x / 150 = 273 / 25[1] [1] so x = 1638 = 1.6 kW

[11]

SECTION B

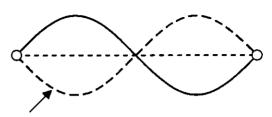

B1.	(a)	The alpha particles ionise the air molecules	[1]	
	, ,	The potential difference across the chamber will cause the ions to migrate	[1]	
		Thereby creating a current		
	(b)	Any assumption e.g. no recombinations, singly ionised etc.	[1]	
	` '	Number of ionisation events = current / charge from ionisation	[1]	
		$= 50 \times 10^{-12} / 1.6 \times 10^{-19}$	[1]	
		$\approx 3 \times 10^8$	[1]	

N.B. do not penalise a candidate that thinks each ionisation contributes $3.2 \times 10^{-19}\,$ C and so gets an answer of 1.5×10^8

(c) (i) Number of ionisations =
$$3 \times 10^8 / 1500$$
 [1]
= 2×10^5 [1]

(ii) Energy of
$$\alpha = 2 \times 10^5 \times 23 \text{ eV}$$
 [1]
= 4.6 MeV [1]

(d)



3 energy levels of daughter	[1]
1 energy level of parent	[1]
Alpha spectra	[1]
Gamma spectra	[1]
Good diagram	[1]

(e)	(i)	No since long half life means decay rate effectively constant	[1] [1]
	(ii)	Use of $\lambda = \ln 2 / t_{1/2}$ = .693 / 8.0 × 10 ⁴ × 3.2 × 10 ⁷ = 2.7 × 10 ⁻¹³ s ⁻¹	[1] [1] [1]
	(ii)	Use of dN/dt = $-\lambda N$ so 1500 = $2.7 \times 10^{-13} N$ to give N = 5.5×10^{15} atoms Mass = number of moles $\times 230 g$ = $(5.5 \times 10^{15} / 6.0 \times 10^{23}) \times 230$ = $2 \mu g$	[1] [1] [1] [1] [1]
(f)	Mer	ation of binding energy or forces between protons ation of $E = m c^2$ d explanation of mass deficiency in terms of energy needed to put the nucleus together	[1] [1] [1]

[2]

Appropriate diagrams here [1 mark] each **B2.** (a) e.g.

Fundamental

The candiate does not need to show this dotted line for a mark Harmonic

l = half wavelength, therefore wavelength = 0.800 m (b) watch for 'ecf'

[1]

(c) As appropriate: 2 or $3 \times$ fundamental [1]

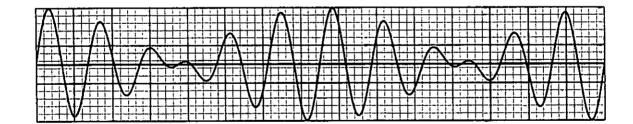
use of $c = f \lambda$ to get $c = 352 \text{ ms}^{-1}$ (d)

[1]

Use of $v = \sqrt{\frac{T}{\mu}}$ to get $T = \frac{mv^2}{l}$

[1]

[1]


 $= 0.001 \times 352^2 / 0.4 = 309.76 \text{ N} = 310 \text{ N}$

[1]

Speed constant explicit or implied from ratio calculation (e) New wavelength = $0.8 \times 440 / 524 = 0.672 \text{ m}$

New string length = half of this figure, i.e. 0.336 m therefore finger placed 6.4 cm from end (Bald 0.336 m gets [3 marks])

[1] [1]

Sound whose amplitude rises and falls periodically [1] (f) [1] Produced by superposition of two waves of similar frequency

At some moment the two waves interfere constructively,

producing constructive interference / loud sound

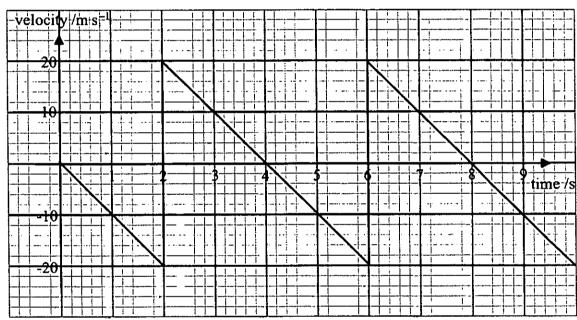
[1]

Later the two waves interfere destructively,

producing destructive interference / cancellation of sound

[1]

Any additional detail / quality gets [1 mark] each up to a maximum of [2 marks]


e.g. correct diagram for the superposition of the waves; identifying constructive interference section of diagram; knowing that beat frequency = frequency difference etc.

g)	(i)	Suitable source	[1]					
		(e.g. single narrow slit or distant straight filament)	[1]					
		Double slit Screen or suitable eyepiece						
		(e.g. travelling microscope or micrometer eyepiece)						
		Sensible layout with reasonable distances seen / implied	[1]					
		N.B. Use of a laser on a double slit is not correct - award a maximum of [2 marks]						
	(ii)	Appropriate pattern consisting of fringes	[1]					
	• •	Approximately equally spaced	[1]					
		Any further quality / detail	[1]					
		e.g. correct attempt to sketch intensity distribution etc.	.,					
	(iii)	The two sources are coherent	[1]					
		Idea that light arrives at the screen with a phase difference that depends on the path length difference.	[1]					
		Bright fringes appear where distances of screen to S ₁ and S ₂ differ by an integral						
		number of wavelengths (or explanation of dark fringes)	[1]					
	(iv)	Central image white	[1]					
	` ,	Fringes appear multicoloured						
		Since wavelength different etc.						
		Any correct extra detail						
		e a red (high wavelength) edge further out than blue one	,					

•

B3.	(a)	(i)	use of $s = ut + \frac{1}{2}a t^2$ or similar plus correct substitution Proper rearrangement to get $t = 2s$ (N.B. watch for $t = distance / g!! - award [0 marks]$)	[1] [1]
		(ii)	Use of v = u + at or similar Proper rearrangement Again - care with student versions!	[1] [1]
		(iii)	Correct maximum value of velocity Correct time period Reversal of velocity Shape	[1] [1] [1] [1]

Answer is

	Accept answer flipped in x -axis $-i.e.$ positive velocities initially	
(iv)	Look for: If the earth and the object are considered then momentum of the system is conserved Plus any other sensible points e.g. Vector nature of momentum Momentum of object is not conserved — It is accelerated by the gravitational force of the earth etc.	[1] [1]
(v)	No Definition / detailed description of SHM Reason why this is not SHM	[1] [1] [1]

[1]

(b) (i)
$$0.01 \times 300 = 2.00 \times v$$
 [1] $v = 1.50 \text{ m s}^{-1}$ [1]

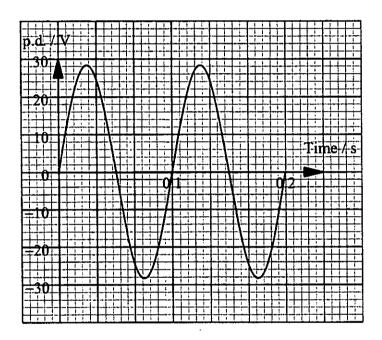
(ii) Realisation that work done = change in kinetic energy k.e. = $1 \times (1.5)^2 = 2.25J$ [1] Frictional force = $\mu R = 0.4 \times 2 \times 10 = 8.0 \text{ N}$ [1] Work done against friction = $8.0 \times d$ [1] Therefore $d = 2.25/8 = 28 \text{ cm}$ [1]

(c) (i) $\omega = 0.5 \text{ rev /s} = \pi$ radians / s [1] Ang mom = I ω = $0.005 \times p = 0.016$ [1] Correct units (kg m² s⁻¹ or J s) [1]

(ii) Conservation of angular momentum (or words to that effect) [1] Mention of no external torque [1]

(iii) Attempt to use the conservation of angular momentum Calculate of new moment of inertia $1 = 5 \times 10^{-3} \times 30 / 25 = 6 \times 10^{-3} \text{ kg m}^2$ [1] Use of new I = old I + m r² [1] Sor² = $0.001 / 0.05 = 0.02$ [1]

So r = 0.141 m = 14 cm


B4.	(a)	(i)	Poles such that the field left to right Essentially two or nothing, but [1 mark] possible if only one pole is marked!	[2]
		(ii)	To reverse the current direction Every 180° / when coil is vertical So that rotation is maintained (or words to that effect)	[1] [1] [1]
	(b)	(i)	Voltmeter parallel Ammeter series	[1] [1]
		(ii)	Use of Power = voltage × current $P = 6V \times 0.50A$ = 3.0 W	[1] [1] [1]
		(iii)	Work done = $6.0 \times 10 \times 0.8 = 48 \text{ J}$ Therefore power = $\frac{48}{24}$ = 2.0 W	[1] [1] [1]
		(iv)	Efficiency = $\frac{Power OUT}{Power IN}$ = $\frac{2}{3}$ = 67%	[1] [1]
	(c)	(i)	Idea that transformer is made up of two coils around an iron core explicit or implied Step-down transformer OR fewer turns on secondary a.c. therefore changing field due to primary Induces changing e.m.f in secondary	[1] [1] [1]
		(ii)	Use of turns ratio = p.d. ratio Secondary turns = $(\frac{6}{230}) \times 690 = 18$	[1] [1]

(d) (i) Any three sensible points - [1 mark] each, up to maximum of [3 marks] e.g. Remove battery. Force the coil to rotate Different connections to coil / replace commutator

Different connections to coil / replace commutator Details of new connections etc.

(ii)	Output sinusoidal	[1]
	Calculation that time period = 0.1 second	[1]
	Correct representation of time period on graph.	[1]
	Calculation of peak p.d for 1^{st} set-up = 14.14 V	[1]
	Realisation that double speed means double the p.d.	[1]
	Correct peak value = 28.3 V	[1]

N.B. with 'ecf' a graph of time period 0.1 s of peak value = 20 V gets [5 marks]

