

Physics Standard level Paper 3

Friday 11 May 2018 (morning)

Candidate session number											

1 hour

Instructions to candidates

- · Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answers must be written within the answer boxes provided.
- · A calculator is required for this paper.
- A clean copy of the **physics data booklet** is required for this paper.
- The maximum mark for this examination paper is [35 marks].

Section A	Questions
Answer all questions.	1 – 2

Section B	Questions
Answer all of the questions from one of the options.	
Option A — Relativity	3 – 5
Option B — Engineering physics	6 – 7
Option C — Imaging	8 – 9
Option D — Astrophysics	10 – 12

[1]

Section A

Answer **all** questions. Answers must be written within the answer boxes provided.

1. A magnetized needle is oscillating on a string about a vertical axis in a horizontal magnetic field *B*. The time for 10 oscillations is recorded for different values of *B*.

The graph shows the variation with *B* of the time for 10 oscillations together with the uncertainties in the time measurements. The uncertainty in *B* is negligible.

(a) Draw on the graph the line of best fit for the data.

(This question continues on the following page)

(Q	uestic	n 1	conti	nued)
, ~				,

(b)	(1))	Write down the time taken for one oscillation when $B = 0.005$ I with its absolute uncertainty.	[1]

(ii) A student forms a hypothesis that the period of one oscillation *P* is given by:

$$P = \frac{K}{\sqrt{B}}$$

where K is a constant.

Determine the value of K using the point for which $B = 0.005\,\text{T}$. State the uncertainty in K to an appropriate number of significant figures. [3]

(iii)	State the unit of <i>K</i> .	[1

(This question continues on the following page)

Turn over

[2]

(Question 1 continued)

(c) The student plots a graph to show how P^2 varies with $\frac{1}{B}$ for the data.

Sketch the shape of the expected line of best fit on the axes below assuming that the relationship $P = \frac{K}{\sqrt{B}}$ is verified. You do **not** have to put numbers on the axes.

(d) State how the value of *K* can be obtained from the graph. [1]

.....

2. An experiment to find the internal resistance of a cell of known emf is to be set. The following equipment is available: one cell one ammeter $10\,\Omega$ resistor Draw a suitable circuit diagram that would enable the internal resistance to be determined. (a) [1] (b) It is noticed that the resistor gets warmer. Explain how this would affect the calculated value of the internal resistance. [3] (c) Outline how using a variable resistance could improve the accuracy of the value found for the internal resistance. [2]

Section B

Answer **all** of the questions from **one** of the options. Answers must be written within the answer boxes provided.

Option A — Relativity

3. The diagram shows the motion of the electrons in a metal wire carrying an electric current as seen by an observer X at rest with respect to the wire. The distance between adjacent positive charges is *d*.

(a)		e whether the field around the wire according to observer X is electric, magnetic or mbination of both.	[1]
(b)	Obse	erver Y is at rest with respect to the electrons.	
	(i)	Discuss the change in <i>d</i> according to observer Y.	[2]
	(ii)	Deduce whether the overall field around the wire is electric, magnetic or a combination of both according to observer Y.	[2]

(Option A continued)

4.	surface. T	e created in the upper atmosphere of the Earth at an altitude of 10 km above the The muons travel vertically down at a speed of 0.995c with respect to the Earth. asured at rest the average lifetime of the muons is 2.1 µs.	
	(a) (i)	Calculate, according to Galilean relativity, the time taken for a muon to travel to the ground.	[1]
	(ii)	Deduce why only a small fraction of the total number of muons created is expected to be detected at ground level according to Galilean relativity.	[1]
	(b) (i)	Calculate, according to the theory of special relativity, the time taken for a muon to reach the ground in the reference frame of the muon.	[2]
	(ii)	Discuss how your result in (b)(i) and the outcome of the muon decay experiment support the theory of special relativity.	[2]

(Option A continues on the following page)

(Option A continued)

5. An observer on Earth watches rocket A travel away from Earth at a speed of 0.80c. The spacetime diagram shows the worldline of rocket A in the frame of reference of the Earth observer who is at rest at x = 0.

Another rocket, B, departs from the same location as A but later than A at $ct = 1.2 \,\mathrm{km}$ according to the Earth observer. Rocket B travels at a constant speed of 0.60c in the opposite direction to A according to the Earth observer.

(a) Draw on the spacetime diagram the worldline of B according to the Earth observer and label it B.

[2]

(Option A, question 5 continued)

Rocket A and rocket B both emit a flash of light that are received simultaneously by the Earth observer. Rocket A emits the flash of light at a time coordinate $ct = 1.8 \, \text{km}$ according to the Earth observer.

(b)	Deduce, showing your working on the spacetime diagram, the value of <i>ct</i> according to the Earth observer at which the rocket B emitted its flash of light.	[3]
(c)	Explain whether or not the arrival times of the two flashes in the Earth frame are simultaneous events in the frame of rocket A.	[2]
(d)	Calculate the velocity of rocket B relative to rocket A.	[2]

End of Option A

Option B — Engineering physics

6. A constant force of 50.0 N is applied tangentially to the outer edge of a merry-go-round. The following diagram shows the view from above.

The merry-go-round has a moment of inertia of $450\,\mathrm{kg}\,\mathrm{m}^2$ about a vertical axis. The merry-go-round has a diameter of $4.00\,\mathrm{m}$.

(a) Show that the angular acceleration of the merry-go-round is 0.2 rad s ⁻² .							[2																																									
•	٠.	•		٠	•		•	•	•	 •	•	•		 •	•	•	•		•	•	•	•	 	•	•	•	 •	•	•	 	٠	•	-	 •	•		•		•	•	 	•	•	 •				
	٠.																						 							 	٠		-								 		-					
																																																\Box

(b) The merry-go-round starts from rest and the force is applied for one complete revolution.Calculate, for the merry-go-round after one revolution,

(1)	the angular speed.	[1]

Option B, question 6 continue

(ii) the angular momentum.	[1]
A child of mass 30.0 kg is now placed onto the edge of the merry-go-round. No external torque acts on the system.	
(c) Calculate the new angular speed of the rotating system.	[2]
(d) The child now moves towards the centre.	
(d) The child now moves towards the centre.	
(i) Explain why the angular speed will increase.	[2]
	[2]
	[2]

(Option B continues on the following page)

(Option B continued)

7. The pressure–volume (pV) diagram shows a cycle ABCA of a heat engine. The working substance of the engine is 0.221 mol of ideal monatomic gas.

diagram not to scale

At A the temperature of the gas is $295\,\text{K}$ and the pressure of the gas is $1.10\times10^5\,\text{Pa}$. The process from A to B is adiabatic.

(a)	Show that the pressure at B is about 5×10^5 Pa.	[2]
(u)	onow that the pressure at B is about 6 × 10 1 a.	[4]

(b) For the process BC, calculate, in J,

(i) the work done by the gas. [1]

	(ii) the change in the internal energy of the gas.
	(iii) the thermal energy transferred to the gas.
(c)	The process from B to C is replaced by an isothermal process in which the initial state is the same and the final volume is $5.00 \times 10^{-3} \text{m}^3$.
	(i) Explain, without any calculation, why the pressure after this change would be lower if the process was isothermal.
	(ii) Determine, without any calculation, whether the net work done by the engine during one full cycle would increase or decrease.

End of Option B

Option C — Imaging

8. (a) A converging (convex) lens forms an image of an object on a screen.

			diagram not to	scale
	object	converging lens		
(i)	Identify whether the	imaga ia raal ar virtual	screen	
(i)		image is real or virtual.		[
(ii)		om the screen and the im e the power of the lens, in	age is 0.40 times smaller than n cm ⁻¹ .	[
(iii)			hromatic aberration. Discuss the nage formed on the screen.	[

(Option C, question 8 continued)

(b) A system consisting of a converging lens of focal length F_1 (lens 1) and a diverging lens (lens 2) are used to obtain the image of an object as shown on the scaled diagram. The focal length of lens 1 (F_1) is 30 cm.

Determine, using the ray diagram, the focal length of the	diverging lens. [3]

(Option C continues on the following page)

[2]

(Option C continued)

9. A ray of light travelling in an optic fibre undergoes total internal reflection at point P.

The refractive index of the core is 1.56 and that of the cladding 1.34.

(a) Calculate the critical angle at the core-cladding boundary.	[1]
---	----	---

(b) The use of optical fibres has led to a revolution in communications across the globe. Outline **two** advantages of optical fibres over electrical conductors for the purpose of data transfer.

- (c) The input signal in the fibre has a power of $15.0\,\mathrm{mW}$ and the attenuation per unit length is $1.24\,\mathrm{dB\,km^{-1}}$
 - (i) Draw on the axes an output signal to illustrate the effect of waveguide dispersion. [1]

(Option C, question 9 continued)

(ii)	Calculate the power of the output signal after the signal has travelled a distance of 3.40 km in the fibre.	[3]
(iii)	Explain how the use of a graded-index fibre will improve the performance of this fibre optic system.	[3]

End of Option C

Please **do not** write on this page.

Answers written on this page will not be marked.

24FP18

Option D — Astrophysics

10.	(a)	Disti	nguish between	
		(i)	the solar system and a galaxy.	[1]
		(ii)	a planet and a comet.	[1]

Turn over

(Option D continued)

11. The graph shows the observed spectrum from star X.

The second graph shows the hydrogen emission spectrum in the visible range.

(a)	(i)	Suggest	using the graphs	s why star X i	s most likely to be	a main sequence star.	[2]
lai	111	Suuuesi.	. usinu ine urabni	s. Wiiv stai A i	2 111021 114614 10 116	a main secucince star.	141

•		•	•	•	•			•		•		•	•	•	٠	٠	•	•	 •	•	٠	•	•	•	•	٠	٠	•	•	٠	•	٠	٠	•	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	•	٠	٠	•	٠	•	٠		•	•	٠	•	•	•	•	٠

(Option D, question 11 continued)

(ii)	Show that the temperature of star V is approximately 10,000 K	
(11)	Show that the temperature of star X is approximately 10 000 K.	

[2]

(b) The following diagram shows the main sequence.

(1)	Write down the luminosity of star X (L_x) in terms of the luminosity of the Sun (L_s).	[1

Turn over

(Option D, question 11 continued)

(ii) Determine the radius of star X (R_x) in terms of the radius of the Sun (R_s) .	[3]
(iii) Estimate the mass of star X (M_X) in terms of the mass of the Sun (M_s).	[2]
Star X is likely to evolve into a stable white dwarf star.	
(c) Outline why the radius of a white dwarf star reaches a stable value.	[2]

(Option D continued)

12.	The Hubble constant is accepted to be 70 km s ⁻¹ Mpc ⁻¹ . This value of the Hubble constant gives an age for the universe of 14.0 billion years.	
	The accepted value of the Hubble constant has changed over the past decades.	
	(a) Explain how international collaboration has helped to refine this value.	[1]
		•
	The redshift of a galaxy is measured to be $z = 0.19$.	
	(b) Estimate, in Mpc, the distance between the galaxy and the Earth.	[2]
		-
		-
		-
		-
	(c) Determine, in years, the approximate age of the universe at the instant when the detected light from the distant galaxy was emitted.	[3]
		-
		-

End of Option D

Please **do not** write on this page.

Answers written on this page will not be marked.

