

PHYSICS STANDARD LEVEL PAPER 2

Monday 16 November 2009 (afternoon

1 hour 15 minutes

Candidate session number								
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer one question from Section B in the spaces provided.
- At the end of the examination, indicate the numbers of the questions answered in the candidate box on your cover sheet.

SECTION A

Answer all the questions in the spaces provided.

A1. Data analysis question.

The frequency f of the fundamental vibration of a standing wave of fixed length is measured for different values of the tension T in the string, using the apparatus shown.

8809-6505

(Question A1 continued)

In order to find the relationship between the speed v of the wave and the tension T in the string, the speed v is calculated from the relation

$$v = 2fL$$

where L is the length of the string.

The data points are shown plotted on the axes below. The uncertainty in v is $\pm 5 \,\mathrm{m\,s}^{-1}$ and the uncertainty in T is negligible.

- (a) Draw error bars on the first and last data points to show the uncertainty in speed v. [1]
- (b) The original hypothesis is that the speed is directly proportional to the tension *T*. Explain why the data do **not** support this hypothesis. [2]

(c) It is suggested that the relationship between speed and tension is of the form

$$v = k\sqrt{T}$$

where k is a constant.

To test whether the data support this relationship, a graph of v^2 against T is plotted as shown below.

The best-fit line shown takes into account the uncertainties for each data point. The uncertainty in v^2 for $T=3.5\,\mathrm{N}$ is shown as an error bar on the graph.

(i)	State the value of the uncertainty in v^2 for $T=3.5$ N.				

At
$$T=1.0\,\mathrm{N}$$
 the speed $v=27\pm5\,\mathrm{m\,s^{-1}}$. Calculate the uncertainty in v^2 . [3]

(Question A1 continued)

(d)	Use the graph in (c) to determine k without its uncertainty.						

(a)	-	ece of copper is held in a flame until it reaches ach thermal equilibrium will depend on the th	÷
			or the proce of copper.
	(i)	Define thermal capacity.	
	(ii)	Outline what is meant by thermal equilibrium	n in this context.
(b)		piece of copper is transferred quickly to a plasticity of the cup is negligible. The following dates and the copper was a fixed part of the copper was a fi	ata are available. = 0.12 kg
(b)		icity of the cup is negligible. The following da	ata are available.
(b)		Mass of copper Mass of water Rise in temperature of water Final temperature of copper	ta are available. = 0.12 kg = 0.45 kg = 30 K = 308 K
(b)		Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹
(b)		Mass of copper Mass of water Rise in temperature of water Final temperature of copper	ta are available. = 0.12 kg = 0.45 kg = 30 K = 308 K
(b)		Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹
(b)	capa	Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper Specific heat capacity of water	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹
(b)	capa	Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper Specific heat capacity of water	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹
(b)	capa	Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper Specific heat capacity of water	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹
(b)	capa	Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper Specific heat capacity of water	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹
(b)	capa	Mass of copper Mass of water Rise in temperature of water Final temperature of copper Specific heat capacity of copper Specific heat capacity of water	ata are available. = 0.12 kg = 0.45 kg = 30 K = 308 K = 390 J kg K ⁻¹ = 4200 J kg K ⁻¹

8809-6505

(a) The equation for the magnitude of the gravitational field strength due to a point mass may be written as below.

$$Y = \frac{KX}{s^2}$$

The equation for the magnitude of the electric field strength can also be written in the same form.

In the table identify the symbols used in the equation.

[4]

Symbol	Gravitational field quantity	Electrical field quantity
Y		
K		
X		
S		

(b) The magnitude of the electrostatic force between the proton and electron in a hydrogen atom is $F_{\rm E}$. The magnitude of the gravitational force between them is $F_{\rm G}$.

Determine the ratio $\frac{F_{\rm E}}{F_{\rm G}}$.	[3]

SECTION B

This section consists of three questions: B1, B2 and B3. Answer one question.

B1. This question is in **two** parts. **Part 1** is about a pumped-storage power station. **Part 2** is about forces and energies.

Part 1 Pumped-storage power station

(a) The diagram, not to scale, shows a pumped-storage power station used for the generation of electrical energy.

Water stored in the tank is allowed to fall through a pipe to a lake via a turbine. The turbine is connected to an electrical generator. The pumped-storage ac generator system is reversible so that water can be pumped from the lake to the tank.

The tank is 50 m deep and has a uniform area of 5.0×10^4 m². The height from the bottom of the tank to the turbine is 310 m. The density of water is 1.0×10^3 kg m⁻³.

(Question B1, part 1 continued)

(i)	Show that the maximum energy that can be delivered to the turbine by the falling water is about 8×10^{12} J.	[3]
(ii)	The flow rate of water in the pipe is $400\mathrm{m}^3\mathrm{s}^{-1}$. Calculate the power delivered by the falling water.	[2]

(Question B1, part 1 continued)

(b) The energy losses in the power station are shown in the following table.

Source of energy loss	Percentage loss of energy
friction and turbulence of water in pipe	27
friction in turbine and ac generator	15
electrical heating losses	5

(1)	energy of water in the tank into electrical energy.	[1]
(ii)	Sketch a Sankey diagram to represent the energy conversion in the power station.	[2]

(This question continues on the following page)

(Question B1, part 1 continued)

(c)		electrical power produced at the power station is transmitted by cables to the umer.	
	(i)	Outline how the energy losses in transmission are minimized.	[3]
	(ii)	State one advantage and one disadvantage that a pumped-storage system has compared to a tidal water storage system.	[2]
		Advantage:	
		Disadvantage:	

Turn over

(Question B1 continued)

Part 2 Force and energies

(a) A system consists of a bicycle and cyclist travelling at a constant velocity along a horizontal road.

(i)	State the value of the net force acting on the cyclist.	[1]
(ii)	On the diagram draw labelled arrows to represent the vertical forces acting on the bicycle.	[2]
(iii)	With reference to the horizontal forces acting on the system, explain why the system is travelling at constant velocity.	[2]

(Question B1, part 2 continued)

(b)		total resistive force acting on the system is 40 N and its speed is 8.0 m s ⁻¹ . Calculate useful power output of the cyclist.	[1]
(c)	The is 70	cyclist stops pedalling and the system comes to rest. The total mass of the system 0kg.	
	(i)	Calculate the magnitude of the initial acceleration of the system.	[2]
	(ii)	Estimate the distance taken by the system to come to rest from the time the cyclist stops pedalling.	[2]
	(iii)	State and explain one reason why your answer to (c)(ii) is only an estimate.	[2]

B2. This question is in **two** parts. **Part 1** is about simple harmonic motion. **Part 2** is about electric circuits.

Part 1 Simple harmonic motion

(a)	In terms of the acceleration, state two conditions necessary for a system to perform simple harmonic motion.	[2]
	1	
	2.	

(b) A tuning fork is sounded and it is assumed that each tip vibrates with simple harmonic motion.

The extreme positions of the oscillating tip of one fork are separated by a distance d.

(i)	State, in terms of d , the amplitude of vibration.	[1]

(ii) On the axes below, sketch a graph to show how the displacement of one tip of the tuning fork varies with time. [1]

(iii) On your graph, label the time period T and the amplitude a. [2]

(This question continues on the following page)

(Question B2, part 1 continued)

(c)		frequency of oscillation of the tips is 440 Hz and the amplitude of oscillation of tip is 1.2 mm. Determine the maximum	
	(i)	linear speed of a tip.	[2]
	(ii)	acceleration of a tip.	[2]

(Question B2 continued)

Part 2 Electric circuits

The components shown below are to be connected in a circuit to investigate how the current I in a tungsten filament lamp varies with the potential difference V across it.

(a) Construct a circuit diagram to show how these components should be connected together in order to obtain as large a range as possible for values of potential difference across the lamp.

[4]

[2]

On the axes, sketch a graph of I against V for a filament lamp in the range V=0 to its normal working voltage.

The lamp is marked with the symbols "1.25 V, 300 mW". Calculate the current in the (c) filament when it is working normally. [1]

The resistivity of tungsten at the lamp's working temperature is $4\times10^{-7} \Omega m$. The total (d) length of the tungsten filament is 0.80 m. Estimate the radius of the filament. [4]

(e) The cell is connected to two identical lamps connected in parallel. The lamps are rated at 1.25 V, 300 mW. The cell has an emf of 1.5 V and an internal resistance of 1.2 Ω . Determine whether the lamps will light normally.

[4]

B3. This question is in **two** parts. **Part 1** is about nuclear fission and fusion. **Part 2** is about global warming.

Part 1 Nuclear fission and fusion

(a) The graph shows the variation of binding energy per nucleon for nuclides with a nucleon number greater than 40.

(i)	Define binding energy.	[1]
(ii)	On the graph, label with the letter S the position of the most stable nuclide.	[1]
(iii)	State why the nuclide you have labelled is the most stable.	[1]

(Question B3, part 1 continued)

(b) In a nuclear reactor, a nucleus of uranium(U)-235 fissions into barium(Ba)-141 and krypton(Kr)-92. The equation for this fission is

$$^{235}_{92}$$
U $\rightarrow ^{141}_{56}$ Ba + $^{92}_{36}$ Kr + x_0^1 n.

(i)	Use the graph to show that the fission of one nucleus of uranium-235 will release about 200 MeV of energy.	[4]
(ii)	State the value of x in the equation.	[1]
(iii)	The mass defect in this reaction is 3.1×10^{-28} kg. Calculate the number of uranium-235 nuclei that must fission in order to release 1.0 kJ of energy.	[2]
(iv)	Outline how this fission reaction can lead to a chain reaction.	[2]

(Question B3, part 1 continued)

(c)	Intensive scientific effort is devoted to developing nuclear fusion as a future energy source. Discuss what could be the social and environmental benefits of using nuclear fusion as compared with nuclear fission as an energy source.	[3]

(Question B3 continued)

(a)

Global warming Part 2

One	reason	often suggested for global warming is the enhanced greenhouse effect.	
(i)	State	what is meant by the enhanced greenhouse effect.	[1]
(ii)	State	two other possible causes of global warming.	[2]
	1.		
	2.		

[2]

[2]

(Question B3, part 2 continued)

(i)

(b) One effect of global warming is to melt the Antarctic ice sheet. The following data are available for the Antarctic ice sheet and the Earth's oceans.

Area of ice sheet $= 1.4 \times 10^7 \,\mathrm{km^2}$ Average thickness of ice $= 1.5 \times 10^3 \,\mathrm{m}$ Density of ice $= 920 \,\mathrm{kg \,m^{-3}}$ Density of water $= 1000 \,\mathrm{kg \,m^{-3}}$ Area of Earth's oceans $= 3.8 \times 10^8 \,\mathrm{km^2}$

Using the data, determine the

mass of the Antarctic ice.

- (ii) change in mean sea level if all the Antarctic ice sheet were to melt and flow into the oceans.

 [3]

 Outline the difference, if any, that the melting of oceanic ice sheets makes to the mean
- sea level of the Earth.